INDUCTIVE ACCELERATION OF AN ELECTRICALLY CONDUCTIVE PARTICLE IN
A VISCOUS LIQUID
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The characteristics of the motion of a particle in an electrically conducting lig-
uid with constant crossed electric and magnetic fields present have been investi-
gated in connection with the problem of MHD-separation in many papers (for example,
see the bibliography in [1]). The separation of electrically conducting particles
contained in a dielectric liquid, which can be accomplished with the help of a
variable magnetic field [2], is also of practical interest. The ponderomotive
force acting on a spherical conducting particle near a straight conductor through
which the discharge current of a capacitor bank is flowing is found in this paper,
and the motion of a particle in a viscous liquid under the action of this force

is investigated.

We shall calculate the ponderomotive force acting on a conducting sphere of radius a
located at a distance [ >> g from the axis of a straight cylindrical conductor through which
at time t > 0 a discharge current Te “tsinwt of a capacitor bank of capacitance C, which is
included in the circuit in series with an inductance 1L, charged in advance to a potential dif-
ference V, startsto flow. It is assumed that the ohmic resistance of the discharge circuit
R << V2L/C, due to which o << w.

We shall introduce a Cartesian coordinate system Oxyz attached to the center of the
sphere, whose Oy axis is antiparallel to the direction of the current during the first half-
period and whose Oz axis is directed along the tangent to the circle formed by the intersec—
tion of the cylindrical surface coaxial with the conductor which passes through the point O
and the plane perpendicular to the Oy axis (Fig. 1).

In the absence of the sphere the magnetic field outside the conductor is represented as
follows in complex notation:
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Let us switch to the spherical coordinate system r, &, @ with center O in which the polar
angle & is figured from the direction of the Oz axis and the azimuthal angle ¢ is figured
from the plane y = 0. In this coordinate system the first two terms of the expansion of the
field (1) in powers of the ratio r/l < 1 are of the form
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It is evident that the term H; describes a uniform field parallel to the 0Oz axis,

The magnetic fields inside and outside of the sphere shall be denoted as hi = he (fw-a)t
and he. In view of the linearity of the electrodynamics equations, one can set

h, = H, -+ etio-oity0,

where 6 is a function which is harmonic in the exterior of the sphere:
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Substituting hi into the induction equation and the condition of a solenoid nature for the

magnetic field and neglecting small terms of the order of o/w in comparison with unity, we
have
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where & = V2/uoow is the skin layer thickness, uo = 47°1077 G/m is the magnetic permeability
of a vacuum, and ¢ is the conductivity of the particle material.

The functions hy, hpy, and he should be bounded at the center of the sphere, the func-
tion ¢ should vanish at infinity, and in addition these functions should provide for conti-
nuity of the magnetic field on the sphere surface

r=a:H, 4+ I, 4+ y0=h (5)
One of the solutions of the system (4) can be represented in the form [3]
he = % (1) — i, ho = + 2= (r), ko= T 75 s (6)
where x is a solution of the equation
Ay, — ix2y = 0. N
Having solved the Laplace equation (3) and the Helmholtz equation (7) with the help of the

method of separation of variables, one can show that 6 and the auxiliary function ¥, in terms
of which the solution of the problem (3)-(5) is expressed, are of the form
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where Ay, and By are unknown constants and J%&(g) and Jsp(£) are cylindrical functions of
the first kind. Bearing (6) and (5) in mind, we find h = h, + h,, where
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Knowing h, it is not difficult to find the distribution of the Foucault currents j inside
the sphere:

J = (i1 + Joette®t, i, = rot hy, k =1, 2

or in the projections
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Next, neglecting small terms of the order of o/w and (a/71)? in comparison with unity, we cal-
culate with the help of (8) and (9) the density of the ponderomotive force f averaged over the
period of the current:
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where jy = (Jkrs> Jke» Jkoe) 1s a vector which is complex-conjugate to jk- Switching to the
Cartesian coordinate system and integrating f over the volume of the sphere, we find the total
ponderomotive force F which is acting on the sphere:
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In the approximation under discussion the principal moment of the ponderomotive forces is
equal to zero. The force F, acting on an ideally conducting sphere is easily calculated from
formula (10):
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The plot given in Fig. 2 indicates a strong dependence of Fy on the relative skin layer thick-

ness §/a. In the case of a thick skin layer the leading term of the expansion of Fy in powers

of (a/8)® < 1 is of the form
2u, a)3(¢z>4 9, —20t
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Making use of formula (10), we shall consider the effect of a variable magnetic field on
the gravitational settling of a single conducting particle in a quiescent liquid near a ver-
tical conductor through which at t > 0 a discharge current flows. The horizontal motion of
the particle caused by the ponderomotive force is found from the solution of the problem
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where p and v are the density and kinematic viscosity of the liquid and p_, is the density of
the particle material. The terms which appear on the right-—hand side of Eq. (11) describe
the Stokesian drag force, the effect of additional masses, the Basse force, and the pondero-
motive force. Neglecting the variation of Fy associated with the displacement of the parti-
cle during the discharge of the capacitor bank, we perform a Laplace transformation in (11).
With p # 1. 6pp the operator solution of the problem (11) X(s) == 7(t) can be represented as
follows:
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The originals of each of the factors appearing in (12) occur in the table given in [4]. Ap-

plying the multiplication theorem and using formula 3.383.1 from [5], one can find the origi-
nal of the function X(s):
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where #(1/2, 3/2; 2ut) is the degenerate hydrogeometric function. The limiting form of the
law of horizontal motion of the particle (13) at Jt o> max(.kls"l, o= 2y
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obtained with the help of asymptotic expansions of the error integral and the degenerate hy-
pergeometric function at large values of their arguments [6], permits estimating the maximum

displacement of a particle under the action of a variable magnetic field generated by a dis-
charge current.
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