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The characteristics of the motion of a particle in an electrically conducting liq- 

uid with constant crossed electric and magnetic fields present have been investi- 
gated in connection with the problem of MHD-separation in many papers (for example, 
see the bibliography in [i]). The separation of electrically conducting particles 
contained in a dielectric liquid, which can be accomplished with the help of a 

variable magnetic field [2], is also of practical interest. The ponderomotive 

force acting on a spherical conducting particle near a straight conductor through 
which the discharge current of a capacitor bank is flowing is found in this paper, 
and the motion of a particle in a viscous liquid under the action of this force 
is investigated. 

We shall calculate the ponderomotive force acting on a conducting sphere of radius a 

located at a distance I >> a from the axis of a straight cylindrical conductor through which 
at time t > 0 a discharge current Ie-~tsin~t of a capacitor bank of capacitance C, which is 
included in the circuit in series with an inductance L, charged in advance to a potential dif- 
ference V, starts to flow. It is assumed that the ohmic resistance of the discharge circuit 
R << 2~/C, due to which ~ << ~. 

We shall introduce a Cartesian coordinate system Oxyz attached to the center of the 
sphere, whose Oy axis is antiparallel to the direction of the current during the first half- 
period and whose Oz axis is directed along the tangent to the circle formed by the intersec- 
tion of the cylindrical surface coaxial with the conductor which passes through the point O 
and the plane perpendicular to the Oy axis (Fig. I). 

In the absence of the sphere the magnetic field outside the conductor is represented as 
follows in complex notation: 

m = O, r =  V -  1, 
�9 v (1) Hx ~I z tI x + l I =-~. 

= 2n ( x + l )  ~ + : z  ~' t t z  =--[2"--E(x +l)2+zs'~ 

Let us switch to the spherical coordinate system r, ~, ~ with center O in which the polar 
angle ~ is figured from the direction of the Oz axis and the azimuthal angle ~0 is figured 

from the plane y = 0. In this coordinate system the first two terms of the expansion of the 
field (I) in powers of the ratio r/~ < 1 are of the form 

H~ ---- (H~ + H2) e (m-~)~, H~ = [ - - H o c o s ~ , H o s i n ~ , 0 ] ,  Ho ---- -f~-,~ 
(2) 

H~ = [Ho ~- sin 2~ cos % Ho } cos 2~ cos cP, - -  H o ~  cos @ sin q~]. 

It is evident that the term HI describes a uniform field parallel to the Oz axis. 

The magnetic fields inside and outside of the sphere shall be denoted as hi = he (i~-~)t 
and h e . In view of the linearity of the electrodynamics equations, one can set 

he = He q- e(U~ 

where ~ is a function which is harmonic in the exterior of the sphere: 

t o o t o sinO--~ + (3) 
A0 = 0, A = ~ ~ r s ~ + r~ sin-----~ 00 r ~ sin ~ ~} 0~ 2" 
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Substituting h i into the induction equation and the condition of a solenoid nature for the 
magnetic field and neglecting small terms of the order of ~/~ in comparison with unity, we 
have 

Ah, - -  -~-  ~ T#  (sin Oho) + --sin ~ --a~ + i + ~ (• ~ h~ = 0, 

hho  + - 7  oe sin 2 ff 0~ 2 ~ i (• 2 ho = O, (4) 

Ah~ + -7 sin t~ ~ 0~- + - -  = O, sin" ~ Oep 2 ~ + i (ur) 2 hr 

o 0% V~ s in~ 0 (r2hr) + ~ (sin ~h~) + ~ = 0, • ---- 
7 o~ ---6-' 

where ~ = /2/poOw is the skin layer thickness, Po = 4~'10 -7 G/m is the magnetic permeability 
of a vacuum, and ~ is the conductivity of the particle material. 

The functions hr, h0, and h~ should be bounded at the center of the sphere, the func- 
tion 8 should vanish at infinity, and in addition these functions should provide for conti- 
nuity of the magnetic field on the sphere surface 

r : a : H 1 -~ I I  2 + V0 = h.  ( 5 )  

One of the solutions of the system (4) can be represented in the form [3] 

02 t 0 i 0 
h~ = T r 2  (rx) - i• ho = T-b-~( rx) ,  h v = (rx),j ( 6 )  r s in~  O(p 

where X is a solution of the equation 

AZ - -  i• = 0. ( 7 )  

Having solved the Laplace equation (3) and the Helmholtz equation (7) with the help of the 
method of separation of variables, one can show that ~ and the auxiliary function X, in terms 
of which the solution of the problem (3)-(5) is expressed, are of the form 

O=-~iA~cos8+ I A s i n 2 8 c o s %  r-'~- 2 

i 
7, = ~ r  [B1J3/2 (~) cos  8 + BiJs/~ (~) s in  2ff cos ~o1, ~ = •  I/r-----7,. 

where A k and B k are unknown constants and J3/2(~) and Js/2(~) are cylindrical functions of 
the first kind. Bearing (6) and (5) in mind, we find h = hl + hi, where 

2 B i hit = 7 7 -  1J3/2 (~) cos 8 ,  hlo = - ~  B1 s in  ff [Jal2 (~) - -  ~Jz~(~)l, 

6 B 2 h2r =-~ 2 Jsl~ (~) s in  2(} cosq% h 2 ~ = r - ~ B ~ c o s  20 cose~[~J312(~)--2J~l~(~)],~ 

hl~ -~ 0, 

A1 __ aaHo s (~o) 
2 s~/~ G ) '  

B1 3aa/2 H o 
2~o "]-1/2 (~0)' 

2 
hi~ = 7 B 2  cos ~ sin cp[iJs/2(~)-- ~J3/2(~)l, 

A2 = __ a5Ho J7/2 (~o). ~o = Ma I/r-----7,; 
3z "%2 (~o)' 

5a 512 H o 
B i - -  6Z~o G / i G ) "  

(8) 

839 



Knowing h, it is not difficult to find the distribution of the Foucault currents j inside 
the sphere: 

j = ( j ,  -k j.,)e ( ~ - ~ ) t ,  j~ = rot h~, k = t ,  "2 

or in the projections 

]lr  = ] ~  = ]zr = O, ] ~  = V ;  B~Ja/z  (~) s in ~, 

2i• 2ix2 B " (9)  
]~o = --~r BJ~/~ (~) cos ~ sin r ]z~ = - - ~  zJ~/~ (~) cos 20 cos r 

Next, neglecting small terms of the order of a/~ and (a/~) ~ in comparison with unity, we cal- 
culate with the help of (8) and (9) the density of the ponderomotive force f averaged over the 
period of the current: 

fr --~ - -  ~t--~0 e-2q't Re  []l*(p (h11~ + h20) + J2$~hlo], 2 

. *  . *  = h,d, l{~ = ~- -  e R8 []lr (hi t  ~- h2r) ~- ]2qDhlr], /(p 2 

w h e r e  j ~  = ( J k r ,  J k 0 ,  J r i s  a v e c t o r  w h i c h  i s  c o m p l e x - c o n j u g a t e  t o  Jk"  S w i t c h i n g  t o  t h e  
C a r t e s i a n  c o o r d i n a t e  s y s t e m  and i n t e g r a t i n g  f o v e r  t h e  v o l u m e  o f  t h e  s p h e r e ,  we f i n d  t h e  t o t a l  
p o n d e r o m o t i v e  f o r c e  F w h i c h  i s  a c t i n g  on t h e  s p h e r e :  

Fx = ~ I %  -2'zt, F~ = Fz = O, 

0.5 (1~21 -~ ~,22) - -  ;--1 (31~1,~2 Af.. 2[~2Vl ) ._~ 2;--2 (3[~1[~2 ..]_ V2) __ 6;--31~1,~1 (10)  

q = "~1 (72 --  2;-1~2 + 2;-2y1) '~ 

2a 
t31,~ = sh 2~ ~ s in  2~, 71,~ = ch 2~ ~ cos  2~, ~ = --8-. 

In the approximation under discussion the principal moment of the ponderomotive forces is 
equal to zero. The force F~ acting on an ideally conducting sphere is easily calculated from 
formula (I0): 

F ~ x = l i m F ~ =  ~ ~  a ~ ~ 7  I2e-=~t, F ~ y = F ~ ,  = 0 .  

The p l o t  g i v e n  i n  F i g .  2 i n d i c a t e s  a s t r o n g  d e p e n d e n c e  os F x on t h e  r e l a t i v e  s k i n  l a y e r  t h i c k -  
n e s s  8/a. In the case of a thick skin layer the leading term of the expansion of F x in powers 
of (a/6) 4 < 1 is of the form 

~---'gi-~ " 

Making use of formula (i0), we shall consider the effect of a variable magnetic field on 
the gravitational settling of a single conducting particle in a quiescent liquid near a ver- 
tical conductor through which at t > 0 a discharge current flows. The horizontal motion of 
the particle caused by the ponderomotive force is found from the solution of the problem 

t 
__ 2 d~l ~ 2 . f - -  ~ d2l(T) 
4 ~a3p p d~l 6~p~a dd~/t - - 7  aa3p~72t2 - -  opa g a v j ~ X  
3 dt 2 ( l l )  

0 
xy~-t__+-a-  ~ I2e-2~t, 

dl t=O: l = l  0, -37=0' 
where p and ~ are the density and kinematic viscosity of the liquid and pp is the density of 
the particle material. The terms which appear on the right-hand side of Eq. (ii) describe 
the Stokesian drag force, the effect of additional masses, the Basse force, and the pondero- 
motive force. Neglecting the variation of F x associated with the displacement of the parti- 
cle during the discharge of the capacitor bank, we perform a Laplace transformation in (ii). 
With p # 1.6pp the operator solution of the problem (ii) X(s) ~- /(t) can be represented as 

follows: 

lo ~3 t ( 1 t .) (12) 
X ( s ) = T +  ~ - - ~ 2  ~(,+2~) - V ; _ z  1 ] / ~ - z ~  ' 
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3q~o 
h,~ = - -  bl _+ ~ b~ - -  b~, h S~p~lo 3 I% 

bl qP]/~ b i - -  9pv P l - - 2 P p + P "  2apl , o , a Pl 

The originals of each of the factors appearing in (12) occur in the table given in [4]~ Ap- 
plying Llle multiplication theorem and using formula 3.383.1 from [5], one can find the origi- 
nal of the function X(s): 

l(t)= Z0 + 2a(~--~)[n(t'a'~)--n(t'~'h)), 

{ 

~1 (t, a ,  %h) = X~ + 2a 

[ ]1 2a eXeht 2 i + ~ 1 V-~ e-Uedu )~k ' k = t, 2, 
0 

where ~(i/2, 3/2; 2~t) is the degenerate hydrogeometric function. The limiting form of the 
law of horizontal motion of the particle (13) at /t >> max(II~l -I, _i/2) 

z - z 0 =  48~p~lg 7 1 l y~7~t ' 

o b t a i n e d  w i t h  the  h e l p  o f  a s y m p t o t i c  e x p a n s i o n s  of  the  e r r o r  i n t e g r a l  and the  d e g e n e r a t e  h y -  
p e r g e o m e t r i c  f u n c t i o n  a t  l a r g e  v a l u e s  o f  t h e i r  a rgumen t s  [ 6 ] ,  p e r m i t s  e s t i m a t i n g  the  maximum 
d i s p l a c e m e n t  of  a p a r t i c l e  under  the  a c t i o n  o f  a v a r i a b l e  m a g n e t i c  f i e l d  g e n e r a t e d  by a d i s -  
c h a r g e  c u r r e n t .  
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